Skip to content Skip to footer

ユークリッドの原論の入力と出力

ユークリッドの原論の入力と出力

入力

「ユークリッド原論」の入力は、いくつかの基本的な要素から構成されています。

まず、**定義**があります。これは、点や線、平面、角といった幾何学の基本的な対象を言葉で説明したものです。例えば、「点は部分を持たないものである」といった定義があります。

次に、**公準**があります。これは、証明なしに真であると認められる基本的な命題です。原論には5つの公準があり、例えば「任意の異なる2点を通って1つの直線を引くことができる」といった内容です。

さらに、**公理**があります。これは、証明なしに真であると認められる、より一般的な数学的真理です。例えば「同じものに等しいものは、互いに等しい」といった内容です。

これらの定義、公準、公理が、「ユークリッド原論」の入力となります。

出力

「ユークリッド原論」の出力は、入力から論理的な推論によって導き出される、様々な幾何学的な命題です。

これらの命題は、**定理**、**系**、**補題**、**作図問題**といった形で提示されます。

* **定理**は、重要な幾何学的真理を述べたものであり、例えば「三角形の内角の和は二直角に等しい」といった命題が挙げられます。
* **系**は、定理から容易に導き出すことのできる命題です。
* **補題**は、他の命題を証明するために用いられる補助的な命題です。
* **作図問題**は、定規とコンパスだけを用いて、特定の幾何学的図形を作図する方法を示したものです。

これらの命題はすべて、定義、公準、公理、そして既に証明された命題のみを用いて、厳密に論理的に証明されます。

Amazonで詳細を見る

Leave a comment

0.0/5